Almost $\eta-$Ricci Solitons on Pseudosymmetric Lorentz Sasakian Space Forms

نویسندگان

چکیده

In this paper, we consider pseudosymmetric Lorentz Sasakian space forms admitting almost $\eta-$Ricci solitons in some curvature tensors. Ricci pseudosymmetry concepts of admits soliton have introduced according to the choice special tensors such as Riemann, concircular, projective, $\mathcal{M-}$projective, $W_{1}$ and $W_{2}.$ Then, again tensor, necessary conditions are given for form be semisymmetric. Then characterizations obtained classifications made under conditions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ricci Solitons in Lorentzian Α-sasakian Manifolds

We study Ricci solitons in Lorentzian α-Sasakian manifolds. It is shown that a symmetric parallel second order covariant tensor in a Lorentzian α-Sasakian manifold is a constant multiple of the metric tensor. Using this it is shown that if LV g + 2S is parallel, V is a given vector field then (g, V ) is Ricci soliton. Further, by virtue of this result Ricci solitons for (2n + 1)-dimensional Lor...

متن کامل

Eta-Ricci solitons on para-Kenmotsu manifolds

In the context of paracontact geometry, η-Ricci solitons are considered on manifolds satisfying certain curvature conditions: R(ξ,X) · S = 0, S · R(ξ,X) = 0, W2(ξ,X) · S = 0 and S · W2(ξ,X) = 0. We prove that on a para-Kenmotsu manifold (M,φ, ξ, η, g), the existence of an η-Ricci soliton implies that (M, g) is quasi-Einstein and if the Ricci curvature satisfies R(ξ,X) · S = 0, then (M, g) is Ei...

متن کامل

RICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM

Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...

متن کامل

On Ricci Curvature of C-totally Real Submanifolds in Sasakian Space Forms

Let Mn be a Riemannian n-manifold. Denote by S(p) and Ric(p) the Ricci tensor and the maximum Ricci curvature on Mn, respectively. In this paper we prove that every C-totally real submanifolds of a Sasakian space form M̄2m+1(c) satisfies S ≤ ( (n−1)(c+3) 4 + n 2 4 H2)g, where H2 and g are the square mean curvature function and metric tensor on Mn, respectively. The equality holds identically if ...

متن کامل

Lorentz Ricci solitons on 3-dimensional Lie groups

The three-dimensional Heisenberg group H3 has three left-invariant Lorentz metrics g1 , g2 and g3 as in [R92] . They are not isometric each other. In this paper, we characterize the left-invariant Lorentzian metric g1 as a Lorentz Ricci soliton. This Ricci soliton g1 is a shrinking non-gradient Ricci soliton. Likewise we prove that the isometry group of flat Euclid plane E(2) has Lorentz Ricci ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in advanced mathematical sciences

سال: 2023

ISSN: ['2651-4001']

DOI: https://doi.org/10.33434/cams.1236095